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Abstract. An exact calculation of the phase diagram for a loop-gas model on the brickwork
lattice is presented. The model includes a bending energy. In the dense limit, where all the
lattice sites are occupied, a phase transition occurring at an asymmetric Lifshitz tricritical point
is observed as the temperature associated with the bending energy is varied. Various critical
exponents are calculated. At lower densities, two lines of transitions (in the Ising universality
class) are observed, terminated by a tricritical point, where there is a change in the modulation
of the correlation function. To each tricritical point an associated disorder line is found.

1. Introduction

Models of closed loops on lattices in two dimensions have attracted considerable attention
[1]. In a theoretical context they arise naturally as high-temperature expansions of spin
models and they are closely related to integrable systems such as vertex models [2]. Loops
on a lattice may also be regarded as simple models for (short) ring polymers in solution [3, 4].
The segments of the loop are then regarded as monomers, or small clusters of monomers.
While realistic systems are three-dimensional, the two-dimensional case provides rich critical
behaviour, and it may be hoped that some features hold in higher dimensions. Solid-on-
solid models used in the study of roughening transitions in three-dimensional growth may
also be mapped onto various two-dimensional loop-gas models [1].

In this paper a model of loops is studied, consisting of self-avoiding rings with a bending
energy. We are mainly interested in the effects of varying the density of monomers on the
lattice and temperature. The model is defined as follows. Each bond of the lattice is either
occupied by a monomer or empty. Each monomer placed on the lattice connects to two
others such that the only allowed configurations consist of closed self-avoiding loops. An
energy penaltyε is associated with each turn. The density of lattice bonds occupied is
allowed to change, and the model is studied in the grand canonical ensemble by introducing
a fugacityK for each monomer.

On the square lattice, and in the limit that the lattice is maximally occupied (all the
sites visited) this model corresponds to the so-called F-model [5, 17], which exhibits an
infinite-order phase transition as the bending energy, or equivalently temperature, is varied.
At low temperatures corners are expelled from the bulk, while at high temperatures there is
a proliferation of corners.

A qualitatively similar transition is seen in a model of a single Hamiltonian walk on the
square lattice with a bending energy [6]. The Hamiltonian walk may be thought of as the
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Figure 1. The BW and the corresponding honeycomb lattice.

limit of an interacting self-avoiding walk where the attractive nearest-neighbour monomer–
monomer interactions are strong enough to exclude any lattice vacancies. In the other limit,
the non-interacting self-avoiding walk, it is known that the bending energy is irrelevant
[3, 4]; it changes the effective size of a monomer without changing the critical behaviour.
At low enough densities we expect that for the loop-gas model the bending energy will also
be irrelevant in this sense.

One therefore expects that between zero density (bending interaction irrelevant) and
density one (bending interaction relevant) there should be a ‘critical’ density corresponding
to a change of behaviour.

In this paper we study the loop-gas model on the brickwork (BW) lattice. The BW
lattice corresponds to a square lattice with half the horizontal bonds removed, giving rise
to the ‘brick wall’ motif, see figure 1. The BW lattice is topologically identical to the
hexagonal lattice.

At density one we find a qualitatively similar phase transition to that on the standard
square lattice in that there is a low-temperature phase in which the corners are expelled
from the bulk and a high-temperature phase where there is a finite density of corners in
the bulk. The details of the transition are, however, very different: the transition occurs at
a tricritical Lifschitz point and the high-temperature phase is modulated and critical. Such
a phase transition is reminiscent of the Pokrovsky–Talapov transition [7]. In this limit
our model is equivalent to a modified KDP model on the hexagonal lattice [8, 9]. The
existence of a modulated phase atρ = 1 implies the existence of lines of disorder in the
phase diagram [10], along which the correlation functions change from modulated at high
densities to monotonic at low densities.

As the density is reduced the tricritical point is extended into a line of critical points
in the Ising universality class which terminates at zero temperature at a critical density of
about 0.8. ForK < 1, or at low density, another line of critical points is observed, again
in the Ising universality class; our model in this region is essentially the Ising model on the
hexagonal lattice with one of the three couplings different from the other two.

The remainder of this paper is organized as follows. In section 2, the grand canonical
partition function (and other relevant quantities) is calculated by expressing it first in terms
of Grassman integrals, which are then exactly computed in the thermodynamic limit. In
section 3 theK → ∞ (ρ → 1) limit is discussed, along with the nature of the low and
high temperature phases. In section 4 the phase boundaries and lines of disorder are found
and the different aspects of the phase diagram discussed. Section 5 is devoted to final
discussions and conclusions.

2. The model

We consider a two-dimensional gas of loops on a BW lattice. The loops are self-avoiding,
and we assign a fugacityK to each occupied link. This BW lattice can be visualized as a
honeycomb (HC) lattice (see figure 1), and we associate a weight of e−βε (whereβ = 1/T
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is the inverse temperature) to each corner of a loop or equivalentlyλ = e−2βε to horizontal
links. This model is a straightforward extension of the F-model to the BW lattice. The aim
of this paper is to calculate the phase diagram and properties of this system as a function of
the site densityρ (or equivalently bond fugacityK) and temperature. The grand canonical
partition functionZ of the system is given by:

Z =
�∑
N=0

KNZN (1)

= e−β�f (K,T ) (2)

where� = L2 is the total number of sites of the lattice of linear dimensionL, andZN
is theN -site partition function. As usual, the canonical partition function at site density
ρ = N/� can be obtained through (1) by:

ZN =
∮

dK

K
e−�[ρ logK−βf (K,T )] (3)

= e−β�fc(ρ,T ). (4)

In the thermodynamic limit, we have the usual relation

ρ = K ∂

∂K
logZ. (5)

The loop gas can be identified with the graphs of the high-temperature expansion of an
Ising model on a BW lattice, with a weightK per vertical bond andλ2K per horizontal
bond. This identification holds provided thatK 6 1. However, the solution follows for any
value ofK.

Using the results of Houtappel [11, 12], we have, for anyK:

f (K, T ) = 1

16π2

∫ π

0
dkx

∫ π

0
dky log(a1K

4+ a2K
2+ a3) (6)

where

a1= 1+ 4λ4 cos2 ky − 4λ2 coskx cosky (7)

a2= 2− 4 cos2 ky + 4λ2 coskx cosky (8)

a3= 1. (9)

This result, as well as the correlation functions, can be easily obtained by using Grassman
variables. Following Samuel [14, 13], the partition functionZ can be represented as a
Grassman integral

Z =
∫

DψDϕe−A (10)

where

A = −
∑
m,n

(ψ
m,n
3 ψ

m,n
1 + ψm,n

4 ψ
m,n
2 + ϕm,n3 ϕ

m,n
1 + ϕm,n4 ϕ

m,n
2 + λ(ψm,n

1 ψ
m,n
2 + ψm,n

3 ψ
m,n
4

+ψm,n
2 ψ

m,n
3 + ψm,n

1 ψ
m,n
4 ϕ

m,n
1 ϕ

m,n
2 + ϕm,n3 ϕ

m,n
4 + ϕm,n2 ϕ

m,n
3 + ϕm,n1 ϕ

m,n
4 )

+K(λ2ϕ
m,n
3 ψ

m,n
1 + ψm,n+1

4 ϕ
m,n
2 + ϕm,n4 ψ

m−1,n
2 )) (11)

andψm,n
1 , ψ

m,n
2 , ψ

m,n
3 , ψ

m,n
4 are fermionic fields attached to each lattice site(m, n). The

fermion integral can be performed and the grand potential (6) can be recovered. In addition,
the generic correlation functions read:

G(m, n) = (−1)m
1

4π2

∫ π

0
dkx

∫ π

0
dky

ei(mkx+nky)

a1K4+ a2K2+ a3
. (12)
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The actual correlation functions contain regular multiplication factors which do not modify
the long-distance behaviour.

Integration overkx can be performed and gives:

f (K, T ) = 1

8π

∫ π

0
dky log

a +√a2− b2

2
(13)

G(m, n) = (−1)m
∫ π

0

dky
2π

einky
√
a2− b2

(√
a2− b2− a

b

)m
(14)

where

a = (1+ 4λ4 cos2 ky)K
4+ (2− 4 cos2 ky)K

2+ 1 (15)

b = −4λ2 coskyK
2(K2− 1). (16)

The canonical free energy (at bond densityρ = N/�) is given by:

fc(ρ, T ) = ρ logK − f (17)

whereK is determined as a function ofρ through:
ρ

K
= 1

8π

∫ π

0
dky

1

g(K, T , ky)

∂g(K, T , ky)

∂K
(18)

and

g = a +√a2− b2

2
. (19)

In the following, we will work in the grand canonical ensemble, and transpose the
results to the canonical ensemble when necessary. We first consider the fully packed lattice
(ρ = 1) and then discuss the dilute case.

3. The fully packed lattice

By analogy with polymer theory, it is interesting to consider the case where all lattice
sites are visited once and only once by the loops. This is the non-connected version of
Hamiltonian path model, with a penalty factorλ per corner. From equation (18), we see
thatρ = 1 for K = ∞. We are thus led to study equation (17) in the limit whenK →∞.
One obtains:

fc = − 1

4πβ

∫ π

0
dkx

∫ π

0
dky log(1+ 4λ4 cos2 ky − 4λ2 coskx cosky). (20)

As usual we identify the critical points of the system from the zeros of the argument of
the log in the above equation. It may be seen that no zeros exist forλ < 1/

√
2 and that for

λ > 1/
√

2 zeros exist at:

kx = 0

cosky = 1

2λ2
.

(21)

This implies that the whole regionλ > 1/
√

2 is critical, with a temperature-dependent
critical wavevector. We therefore identifyλ = 1/

√
2 with a tricritical Lifshitz point, and the

regionλ > 1/
√

2 as a Lifshitz line of critical points. Using the definitionλ = exp−ε/T ,
the corresponding temperature for the tricritical point isTc = 2ε/ log 2.

The integration overkx in equation (20) may be carried out explicitly, giving:

fc = − 1

4πβ

∫ π

0
dky log

(
1+ 4λ4 cos2 ky + |1− 4λ4 cos2 ky |

2

)
(22)



Gas of self-avoiding loops on the brickwork lattice 1689

Figure 2. The free energy as a function of temperature for the fully packed model.

or

fc = − 1
2

∫ arccos(1/2λ2)

0
dky log(4λ4 cos2 ky) for T > Tc (23)

≡ 0 for T 6 Tc. (24)

This form is similar to the models studied in [7, 8] (see figure 2).
It is natural to define the average number density of cornersnc as the order parameter

for this transition. Indeed, we find (see figure 3),

nc = 2

π
arccos

(
1

2λ2

)
for T > Tc (25)

≡ 0 for T 6 Tc. (26)

The critical behaviour of the order parameter is given bync ∼ δT 1/2 as T → Tc so
that the critical exponentβ is equal to1

2. The low-temperature phase is completely frozen,
consisting of straight vertical lines, with all the corners rejected to the outer boundary.
The high-temperature phase is modulated in they-direction with a wavevector given by
equation (21)

The same critical behaviour is also seen in the zero-temperature phase diagram of the
frustrated Ising model on the triangular lattice with appropriately chosen coupling constants
[8, 9]. This model may be mapped onto a tiling consisting of three types of lozenge [9].
One lozenge has a lower energy than the other two. At zero temperature, the tiling must be
perfect. One rapidly realizes that the only way of introducing a lozenge of higher energy
is to introduce an infinite line of them. Identifying the side of a lozenge with the bisector
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Figure 3. The average number of corners as a function of temperature for the fully packed
model.

of an occupied bond on the dual hexagonal lattice, our loop model may be seen as being
equivalent to this lozenge tiling (see figure 4). At non-zero temperature (as defined in our
model) a defect line may be seen as a restricted SOS interface crossing the lattice. The
energy needed to create one such line isE = 2εL and the entropy isS = L log 2. When
the associated free energy,F1 = L(2ε−T log 2), becomes negative, defect lines (and hence
corners) proliferate. This defines the critical temperature asTc = 2ε/ log 2, consistent with
the tricritical temperature found analytically above.

In the high-temperature phase, where these lines proliferate, we give a simple physical
argument for the observed modulation in the correlation functions. The free energyF1 is
simply the chemical potential for creating one such line. When a finite density of lines
is present, the reduction of entropy must be taken into account [15], yielding an effective
repulsion between them. The total free energy forN lines, per occupied bond, is:

FN = −F1N + c
N∑
i=1

T

d2
i

(27)

wheredi is the distance between linesi and i + 1. Minimizing FN with respect to thedi ,
subject to the constraint

∑
i di = L, gives all thedi equal and given by:

di ∼ 1√
T log 2− 2ε

(28)

explaining the form of the temperature dependence of the modulation wavevector,
equation (21).
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Figure 4. The mapping between the loop-gas and lozenge model: the shaded region shows an
infinite line of defects.

Close to the tricritical Lifshitz point, the free energy scales as

f ∼ 4

πT 3
c

(δT )3/2 (29)

from which we obtain the specific-heat critical exponentα = 1
2.

Along the Lifshitz line, the critical behaviour of the correlation functions can be
analysed; a generic correlation function is given by

G(r) = 1

4π2

∫ π

0

∫ π

0
d2k

e−ik·r

1+ 4λ4 cos2 ky − 4λ2 coskx cosky
(30)

up to a regular multiplication factor.
Away from the tricritical point, i.e.λ > 1/

√
2, we may develop around the critical

wavevector(0, k) defined in equation (21). Settingkx = qx andky = k+ qy , this becomes:

G(x, y) ∼ e−iky
∫

dqx

∫
dqy

e−iq·r

q2
x + (4λ4− 1)q2

y

. (31)

The exponential prefactor gives the expected spatial modulation in they-direction, and the
correlation function has a logarithmic behaviour at large distances.

Around the tricritical point, the critical wavevector vanishes as well as the coefficient
of the q2

y term, and the expansion must be carried to the next order:

G(x, y) ∼
∫

dqx

∫
dqy

e−iq·r

µ2+ q2
x − µq2

y + q4
y/4

(32)

whereµ = 2λ2 − 1. Therefore, the correlation functions have anisotropic scaling, with
critical exponentsνx = 1 andνy = 1

2.

4. The dilute lattice

We now move to the dilute caseρ < 1.
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4.1. Critical lines

As the densityρ or the fugacityK is lowered, the tricritical Lifshitz point extends into a
critical line. This line can be obtained from the zeros of the logarithm of equation (6)

kx = 0

ky = 0

K = 1√
1− 2λ2

.

(33)

This critical line exists forK > 1. In theρ−T plane, its equation close to the fully packed
caseρ = 1 is given by

ρ ' 1+ 2ε
δT

T 2
c

(34)

whereTc = 2ε/ log 2 is the Lifshitz tricritical temperature.
ForK 6 1, there exists another critical line given by

kx = 0

ky = π
K = 1√

1+ 2λ2
.

(35)

In this region (K < 1), the fugacity can be identified with the tanhβJ1 of a regular
anisotropic Ising model on a HC lattice. Similarly, the second coupling is given by
λ2K = tanhβJ2.

It can be easily seen that both lines correspond to the two-dimensional Ising universality
class: ν = 1. Note that since the problem is formulated as a loop gas, the correlation
functions do not correspond to the spin correlation functions of the Ising model; here we
haveη = 0.

The phase diagram in theK − T plane is shown in figure 5. Using equation (18), we
find the phase diagram in theρ − T plane (see figure 6). One can identify a high-density
transition line and a low-density transition line. The high-density line ends atρc ' 0.8185
and the low-density one ends atρc ' 0.19.

The two critical lines merge atK = 1, where three phases become critical
simultaneously, defining a tricritical point. This is manifested in theρ − T plane by a
jump in the critical densityρ at K = 1. As usual, for zero-temperature tricritical points,
observables develop essential singularities.

4.2. Disorder line

From equation (14), it is easily seen that the correlation functions change from oscillating
(in the x-direction) forK > 1 to monotonic forK < 1. These two regimes must therefore
be separated by a line where the short-distance correlation changes from oscillating to non-
oscillating. This lineK = 1, which passes through the tricritical point (K = 1, T = 0), is
called a disorder line [10]. According to the definition of Garel and Maillard [16], this is a
line of disorder points of the first kind (with zero correlation length).

We have seen that atρ = 1, there is a Lifshitz critical point separating a frozen low-
temperature phase from a modulated (in they-direction) high-temperature phase. At lower
densities, the correlation functions are not modulated. This happens separately for each
value ofkx . Following Garel and Maillard [16], we define the disorder line as the line for
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Figure 5. Phase diagram of the loop gas in theK − T plane; the full curves denote the phase
boundaries; the heavy line represents the Lifshitz line; the broken curves correspond to the
disorder lines. The three phases are defined in the text.

Figure 6. Phase diagram of the loop gas in theρ − T plane; the full curves denote the phase
boundaries; the heavy line represents the Lifshitz line; the broken curves correspond to the
disorder lines. The three phases are defined in the text.
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which the first mode (kx = 0) changes behaviour:

K = 1√
2λ2− 1

. (36)

This line is defined in the high-temperature regionλ > 1/
√

2 only, and corresponds to a
line of disorder points of the second kind.

5. Conclusion

In this paper, a loop-gas model on a BW lattice was considered. An energetic penalty was
included for each corner. Atρ = 1 we observed a phase transition from a low-temperature
frozen (corner free) phase to a high-temperature phase modulated in they-direction. The
phase transition occurs at a tricritical Lifshitz point, whereνx = 1, νy = 1

2. The whole
high-temperature phase is critical. These results are reminiscent of a phase transition of the
Pokrovsky–Talapov type. This behaviour is completely different from the critical behaviour
of the analogously defined model on the square lattice atρ = 1 (the F-model). This is
due to the combination of two effects; the BW lattice automatically imposes self-avoidance
without the inclusion of additional fugacities, and the BW lattice is intrinsically asymmetric.

The phase diagram is given in theK−T (and equivalently theρ−T ) plane. Two lines
of critical points were observed corresponding to high- and low-density phase transitions.
The high-density phase transition is to a phase modulated in thex-direction, and the low-
density phase corresponds to the usual Ising transition. Both transitions are in the Ising
universality class and meet atT = 0 at another tricritical point.

While the model studied is simple, the resulting phase diagram is suprisingly complex.
In the formalism chosen, it is not clear how to characterize the different finite-density phase
transitions in terms of the loop-model observables.
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